Structural steel

Structural steel has superior characteristics when compared with competing materials. In order to replace an area of steel in tension, an equivalent plain concrete area of about 200 units would be required. To compete with Structural Steel in construction, Reinforcing Steel needs to be added to it. The cracking of concrete in tension still cannot be avoided, which often encourages corrosion of reinforcement. In compression, one unit area of steel is the equivalent of 15-20 units of M20 concrete. A comparison shows that steel is at least 3.5 times more effective than concrete. In a compressive loading, there would be 8 times shortening of steel in concrete. Reinforcing steel has to prop up the plain concrete. In structures built of Structural Steel, accidental overloading does not usually lead to great havoc, as there are a considerable reserve strength and ductility. Steel may thus be regarded as a forgiving material whereas concrete structures under accidental overload may well suffer the catastrophic collapse of the whole structure. Repair and retrofit of steel members and their strengthening at a future date (for example, to take account of enhanced loading) are a lot easier than that of strengthened concrete members. The quality of steel-intensive construction is invariably superior when compared with all other competing systems (including concrete structures) thus ensuring enhanced durability. The quality control in construction at the site in India is poor. Structural Steel is recyclable and environment-friendly. Over 400 million tonnes of steel infrastructure and technology for the recycling of steel is very well organised. Steel is a material that can be easily recycled. The recycled, steel can change from one product to another without losing its quality. Steel can as easily turn up in precision blades for turbines or super strong suspension cables. Recycling of steel leads to protection of energy and primary resources and reduces waste. A steel building can be easily designed to allow disassembly or deconstruction at the end of their useful lives leading to many environmental and economic benefits; it can mean that steel components can be re-used in later buildings without the need for recycling, and the lack of proper usage of the energy used and the by-products from the steel production processes. Steel-intensive construction results in the least disturbance to the community in which the structure is located. The latest construction techniques developed in recent years with the help of steel-intensive solutions have been brought to effect that leads to the least disruption to traffic and minimises financial losses to the community and business. As such the initial cost of a concrete intensive structure may sometimes appear to be cheaper, in comparison to the equivalent steel-intensive structure, but it is a known fact that the total lifetime cost of gold is significantly higher. The usual belief that the concrete-intensive structure is cheaper is not based on verifiable facts! There is, therefore, no real cost advantage either.